

Cryogenic Permanent Magnet Undulator Development at the ESRF

J. <u>Chavanne</u>, C. Kitegi, C. Penel, B. Plan, F. Revol

Prototype #1

- Slight modification of the ESRF in-vacuum undulator design
- Hybrid structure Period 18 mm, L=2 m
- Relaxed phase error
- Can be baked at 120 deg C
- Can be operated at room or cryogenic temperature
- Develop the cooling strategy
- Develop the magnetic field measurement at cryo Temp..
- Test with electron beam
- Routine operation in a beamline
- Improve the design
- Prototype # 2
 - Highest magnetic field
 - Low phase error
 - Install on a beamline

NdFeB material at low temperature

Liquid Nitrogen Closed Loop Cooling

Benefits:

- Low thermal gradient in girder
- Cryogenic pumping @ 77 K
- Reliable
- Simple maintenance (2 years)
- Automatic LN2 filling
- 200 Watts electrical power
- Used on ESRF monochromators
- Large Power Margin

Drawback:

•Limited temperature variations. Need additional heaters for temperature tuning

N2 Close Loop

Return Pressure by heater ~ 1.5 Bars to avoid boiling helium in

Heat Load budget without beam @ 130 K : 150 W (measured)

- Conduction 60 W (computation)
- Radiation 90 W

Magnetic Measurements at Cryogenic Temperature

Built :

- A dedicated vacuum chamber for field measurement only

- A stretched wire bench
 - -Field Integrals
 - -Gap Measurement
- A fast scanning Hall probe

Difficulties

- Drive system lacked rigidity and needed to implement two laser interferometers in order to correctly determine the longitudinal position of the Probe.

- Hall probe calibration solved by keeping Hall Probe at 20 deg C by internal heating

Performances

- Measure Bx,By,Bz
- Sample : 0.1mm over 2.5 m (25000 pts) in 90 sec
- Measured repeatability at cryogenic temperature < 2 G in the peak field
 - ~ 0.1 deg rms of phase deviation

Gap change vs temperature is measured with the stretched wire

APS, ESRF, SPRING8 Three Way Meeting 18-20 Mars 2008

12

Accurate determination of temperature gradients

APS, ESRF, SPRING8 Three Way Meeting 18-20 Mars 2008

13

Field Integrals

Cu-Ni Foil & End blocks

Spring loaded tension mechanism of Cupper-Nickel foil :

- Compatible with differential thermal expansion between Copper and Aluminium
- Copper ends block thermally decoupled from Aluminium girder

- Operated at Cryogenic Temperature since 8 January 2008. Beamline taking beam since 2 March 2008.
- Warm-up test scheduled during the March shutdown. Pressure Rise ?
- Closed Orbit error <10 % of size in both plane uncorrected

18

Cryogenic Powers

Without Electron Beam

Radiation from Chamber Wall	90 W
Conduction in Supports	60 W
Power in N_2 Pipe (50 x 1 W/m)	50 W
Power in Circulation Pump	50 W

From Electron Beam

Beam WakeField in RF Finger	0-30 W	Extremities	predicted
Return Current in Copper Sheet	10 W	Uniform	gap=30 mm I=16 x 6 mA predicted
	0.00 M		gap= 5 mm I=16 x 6 mA
Unexplained yet	0-90 W	~uniform	measured fct(gap, Time struct)

Total Cryogenic Power N₂ Consumption

250-350 W 250 – 350 litre/day

measured measured

Remaining Issues

- Observe 0-90 Watt with beam !!
- Depends on gap and filling pattern
- Is it HOM in undulator tank?
- It changes the temperature \sim uniformly by 30 deg
- Small change of peak Field (< 1 %)
- No additional phase error
- Lack of cooling in the upstream RF finger
 - generate a gradient along the magnet array of about 10-15 deg corresponding to a flux input of 6-10 Watts
 - Generate phase errors => must be reduced
 - Remedies :
 - improved thermal connection to RF finger
 - Mechanical taper
 - Improve thermal conductivity in the magnet girder

Conclusion

ood progress me Issues still need to be understood o operational problem with ring ase variations follows the longitudinal temperature gradient Needs to reduce longitudinal temperature gradient for low phase error ! merous design improvements have been identified

Magnetic measurements systems

Choice of materials

Heat transfers

xt cryogenic undulator under design

High remanence (Br > 1.45 T @ 150 K)

Low phase error required ($\leq 2.5 \text{ deg}$, operation above 60 keV)

Period 17-18 mm

No bake out of magnets

